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The modification of the Weyl's theory of uniform distribution [1 to 5] presented in this paper
widens its region of applicability. In particular, we find that the well-known formula which
refers to the process of time-averaging of functions depending on several hamonics of dif
fering frequencies and reduces an infinite integral to a repeated one, can now be applied
over a much wider region. As an example, we consider biharmonic oscillations of a mechan«
ical system in the presence of dry and viscous friction, and square law resistance.

1. Many problems of the theory of oscillations necessitate the computing of mean values
of functions which depend, in general, on a set of hamonics possessing arbitrary frequen-
cies. Such is the case of the Van der Pohl method of averaging when applied to the systems
with n degrees of freedom, while another example is given in [6], which presents a method
of investigating polyharmonic oscillations in nonlinear systems based on the process of
averaging the Lagrangian and the function W, the latter characterizing the nonconservative
forces.

Let us consider a real function f = f{xg,..., x,) periodic in x4, %,,..., %, with the unit
period and strictly Riemann integrable over the region 0. xy, < 1 (¥ = O,..., r). We assume
that the fanction

f@) =f(@t,..., o) (1.1)
obtained from f by replacing x,, with @ ;4 ( = 0,..., r} where @g,ese, @, are real numbers, has
a bound defined by
T
3 f(t)dt 1.2)
s
which we shall call the mean value of f(¢). The integral appearing in (1.2) may be difficult
to integrate when r 3 1, but (1.2) can be replaced by a much simpler formula [2 to 4]

1 1

<f>=S«--Sf(xo,..r,zr)dzo-.-dxr (1.3)

9 9
provided that the numbers @ y/@g,ssss @;/@p are rationally independent (numbers &;,.eey &,
are said to be rationally independent if no set of integers (mgy,m {5000y m )+ (0, Oyeue, 0) mat-
isfies the Eqs. "‘151 +oetm, E‘,= mg)s A question now arises, whether a result resembling
(1.3) could not be obtained for the case when some of @gpeees @, are commensrable. We
shall answer this, using a modification of the Weyl’s theory of uniform distribution. This we
present below as the theory of P~uniform distribution.

1
T — To

Hr=M[f@®#)]= lim

(T—~To)—+00

23



24 M.V. Mironov

2. Definition 2.1. Let the vector P={P,..., P,) be an integral vector (i.e.
all its projections possessing integral values) with all its projections being positive. Then
the system

z, (k) =17 k=123,..) (2.1)

of real functions of natur a! argument shall be P ~uniformly distributed (P-u.d.) med 1, if,
for an arbitrary real vector o = (07y,..., 0,) together with the integral vectors i = (iyyes, i)
and § = (j; ,eeey j,) whose projections satisfy the inequalities 0.C iy, </, < Py, the relations

=1,

pix G, § P x k) + )] = 1

vaml

(2.2)

v

Mcp(k)l—hm—- Z k), %@ Pixy= [T xGw i, Piz) (2.3)

kem1 vl

hold. Here X = (xyuuey %,),
e 4, P <{z)<Jy/ Py
% Jor Py ) = {0 Az}=1i,/ P, (2} =],/ P, (2.4)
0, {z)<i,jP,{z}>], /P,
and {z,} is the fractional part of xy.

Theorem 2.1. Thesystem of functions (2.1) will be P-u.d. mod 1 if and only if
the limit relation

h
Ble(x (k) + o)l = 5r—p 2 Zcp( E)@s)
1Y -"1 hy=1
holds for any function (X} = &b (x,,..., x,) Riemann integrable over the unit cube 0 %y €
£ 1y = 1,..., 7} and periodic in x,,..., x, with the period equal to unity, for which the limit-
pl & x(k) + 0)] is meaningful. In (2.5) <15‘ (hy /Py yoery h,/P ) denotes a value of ¢ (x) for
which the inequality
(Pi(hl/Pls .. -1hr/Pr)<(P'(hl/P1a e ’hr/Pr)<q)3(hl/pl! L ,h,/P,-)

holds. Here (A ,/Py,..., . /P,) and &,{h/Py,..., h/P,) are the corresponding exact lower
and upper bounds of ¢(X) on an open rectangular parallelepiped (,, — 1)/P,, <x, <& /P,
W= Loorh

Proof. Necessity: Assuming that

@ {2z = Yg l@(m+ 02 + 0) + @ (21 — 0,000, 2, — 0)]

we find, that each of the functions considered in the above theorem satisfies
P

o) +0) = D ¢ ’*' ey 2 \x(h—1, b, P; x(k)+0)  (2.6)
P
h =1 hx"“‘l r
where h = (5,,... ix,), 1={1,u., 1) and

Q. x, () /o)y . ) (B, — 1)/ P, < {x, (k) + 6,0} ) P’

at (B e ) RO = D[P0y 50+ D S = 1)/,
' Prlo e wnp,—0, . w0+ >h,/P,
(v=1,...,r)

Consequently
Pi(h/ Pry .o he/PrY S * (M Pry oo e [P Qg (1] Pay o s h, | Py) (2.7
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If we now assume that the system of functions x,(k) is P-u.d. mod 1, then, summing both
perts of (2.6) over k and taking into account (2.7) and (2.2) we obtain, in the limit, (2.5)

Sufficiency: Let(2.5) hold for the system of functions (2.1). Selecting the
function y (i, §, P; x) as @ (x) and taking into account the obvious formula

& ol h h i
... Ex‘(i,j,P;T‘-..... -;,t-).—_-l'l (y—i,)
h'=1 hy=1 1 r v=1

we arrive at the relation (2.2). Therefore (2.1) is P~u.d. mod 1.
For the system of functions of the form

z, (Ky=gq,(k)/ P, (v=1,...r k=1,2,3,...) (2.8)

where g, {k) are integers we have a sharper theorem, the proof of which is mnalogous to that
of Theorem 2.1. It is

Theorem 2.2. The system of functions (2.8) is P-u.d. mod 1 if and only if the
limit relation

P, P,
BOEE + ) =5 3. N 0 (ot o)
"r=1 ==l

holds for every ¢ (X) given in Theorem 2.1.
Theorem 2.3. The system of functions (2.1) is P-u.d. mod 1, if the limit relation

ple(m-x@E)l =0 (2.9)
where e(z) = £2™* holds for the integral vectors m = {myserss m,)# (0,0es, 0) whose compo=
nents are m £ h P, h, = t1, £2,. W= 1,000, 7)

P ro o f. By definition, functions (i , j,, P,,; ,) can be represented by convergent

Fourier series
oo

X (iys iy Pyi 2, 8,)= Z a,(m)e(mz,) (2.10)

m, ==
1
a,(m)= Sx (s iy Pyi 2, 40,)e(—mzx )dz,
0

and we easily see that
a,(0)={(j,—i)/ P, a, (h,P)=0 (hy=4+1,42,+3,...) (2.11)
Let us now consider the system (2.1) assuming that it satisfies the conditions of the
theorem. By (2.10) we have, for {(2.3)
oo 00

AL B xE )= D .. Y am)...qm)emxk) (212

m =—00 My==2—00

Performing the summation of both parts of (2.12) over k and taking into account (2.9) and
(2.11), we obtain (2.2). Therefore the system of functions (2.1) is P-u.d. mod. 1.

Definition 2.2. Numbersy,,..., y, shall be called P-rationally independent if nc
set of integers (mo, LT mr)a‘ (0, 0,..., 0) such that m,, % hyPys hy=11, £ 2,0 =1,
-es 7) satisfies the equations m y, + . 4+ m_y, =m,.

Theorem 2.4. If the numbers y,,..., y, are P -rationally independent, then the sya-
tem of fonctions 2 k) =ky , (¥ = L., ri k= 1, 2,...) is Peu.d. mod. 1.

Proof. A wellknown formula for the sum of a geometric progression yields

S X (k)] = 3 k efn 1)) —em) 2 = L
léle(m X (k) lélﬁ( n) T—em STi=em)] ['sin nn|
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where by conditions of the theorem n=m-Y = m,y, + «.. + m_y, cannot be an integer if
m# (0,...,0) and all m ¥ Ay, P, b=t 1, 12, t3,.... Consequently the relation (2.9) of
Theorem 2.3 holds, and this proves the theorem.

Here it should be noted that if we require in Definition 2.1 that the Eqgs. (2.2) holds for
any, arbitrarily large numbers P,,..., P,, then ths definition will become equivalent to the
definition of uniform distribution (u.d.) in the Weyl's senae [3 and 5]. Similarly, the theorema
given above will yield the corresponding theorems of the theory of uniform distribution, Fur-
ther, Definition 2.1 shows that when the system of functions is u.d. mod 1, then it is P-u.d.
mod 1. The converse is, generally, not true. Let us for example consider the following sys-
tem of functions, obviously not u.d. mod 1

z, (k) = ku, | v, (v=1,..,r k=1 23,..) {2.13)
Here uy, vy # O are integers such that Dluy, vy) = 1 = 1,..., 7} where D{uy, vy} is the
greatest common divisor of u,, and v ,,
It can easily be shown that the system (2.13) can always be represented as
z, (k) = kq,/cp, (v=1,.,1 (2.14)
where ¢, ¢ and p,, ¥ 0 are integers such that
D, q)=1 D, p)=1 @ v="1ur pFEV)

Theorem 2.5, System of functions (2.13) representable by (2,14) is P-u.d. mod 1,
where P = (p,010s Pruys ¢y P} 80d ¢y p, = v,= cp,/Dle, g,

Proof. First we shall show that the numbers g, /cp,,..., q,/cp, are P-rationally inde-
pendent. Let us consider the values of the sum

n=ma/cpy+ ...t mg /cp,y (2.13)

if the components of the vector (my,..., m,) # (0yeee, 0) are my = hy Py, hy==%1, £ 2, 13,
we W= 1y 1) Letm £0and my=0w=l,u.,r = 1). Then n=m_q, /cp, =mu /v, and
it is obvious that, when m #4,P, = h v, , the number 7 is fractional. If even one of the set
of numbers m m...» say m 0, then 7) could be written as

N =mq/cp+ B;/ G (2.18)

Here Gy = py,..., pr and By = m9,G/py + «es + m q,G/p, are integers. Multiplying
(2.16) by G we find that cGp=m q,G,/p, + B, isa fra'ction since ,D(PX' g)=Dp, 6=
= 1 andm,#hp; where h; is an integer. Therefore 7 is also fractional, by Definition
2.2 the numbers §,/¢p, ,..., ¢ /¢p, are P -rationally independent and Theorem 2.4 completes
the proof.

120

8. We shall now return to the problem mentioned in Section 1. Let us write Expression

(1.2) for the mean value of the function (1.1) as
n DT
B=lim= 3 | Flodty, orty, 0/t dhy
noveo k=1 kT

where Tym T> 0 and 7 = (n + 1) T. We shall assume, for convenience, that T is equal to
one of the following magnitudes | 1/wg|,eees {1/0,], say T = Ty = |1/wy). Putting t, = & +
+ kT, we obtain

Te
B =w[g; "ot kg o B2+ 0,8)d8] = piok, . . . ky)]
0

Here yy = wy/®g & = 14ee., 7) and
Te

OG- B = (@t Bt b, L +osds @)
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Let the numbers y, ,..., y, be P-raticnally independent. Using Theorems 2.4 and 2.1 we
arrive at the expression

P, P
1 hy h
= N ... (p'(-—.... —r)
Py, ..., L0, hem1 hm Py ' P,
If Py,..., P, are sufficiently large to justify the following simplification

P, 1
-;—2cp'(...,:%v,...):Sw(...,&,,...)dﬁv (3.2)

v llv =1

then, using (3.1) and putting xy = wy ¢ we obtain

1 11
< =é- . -;\[éf(l'o, §1+%:--‘L'o, cha €r+%’xo)d30]d§l' .. dE, =

1

1
= S[S . .Sf(zoy§1+ Y1Zo, - + .y & + Yro) dEy. . .dE,]dxo

which, after the substitution xy = &, + yyxg @ = l,..., 7) and rearrangement of integrals
yields
1 1

1
Dy = 5 .. Sy(a:o,zl, ..o Z,)dzodzy, . . ., dz, (3.3)
00

0

It should be noted that the function ¢(fl,..., £,) is much smoother than flxos %4000y %)

from which it is obtained by integration. It follows therefore that the substitution (3.2) will

be fully justified for virtually all the functions f(w y¢ye.., @, t) appearing in the study of os-
cillation processes, already when P, > 3. In particular, it follows that the mean value of

ity = flw,t, @w,t) can be obtained from

1

=\

°

provided that the ratio Imll /|m2| is irrational (in which case (3.4) becomes exact), or, pro-
vided that it can be represented as a ratio of two relatively simple numbers P, and P, at

least one of which is large enough to make the substitution of the type (3.2) possible, i.e.
if Py or Py > 3.

1
f (1, za) dz1 dxy (3.4)
°

4. Let us consider the function
Ty = |cos (2neyt — @) + 7 cos (2nagt — @y) [FHF (a.1)
where i = 0, 1, 2,... and w ;, @, > 0. This function is uniform and almost periodic, zince the
corresponding function |cos (2%, — ) + ¥ cos (27x; ~ b,)| 2* 1is continuous in both its
variables x, and x,. Consequently the function (4.1) has the mean value defined by (1.2)
(see e.g. [41). 1t the ratio of frequencies w, and @, satisfies the requirements made at the
end of the previous paragraph, then by (3.4) we have
11
Fgg (1) = S S | €08 25y + 7 €08 2xzy |3+ dxy dzy
00
Let us assume that |y| < 1 and calculate the integral
1
By (1) = S | €08 2rtzy + 74 [ dzy
0
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Here y, = ¥,(x,) = y cos 2mx,. Utilising the obvious formulas

d}z}/ds = sign 1, 21 gign ¢ = 5| 1|
where z is real, we easily obtain
. , , 2 2iN ’
Bz(iu) (va) =(2i + 2) (2i 3 3) By (1a)s Bzi (0)= ra m , B:i 0)=0 (4.2)

where m!! denotes the product of natural numbers not greater than m and all of the same
parity as m. The latter yields B, 4 5,(y,) in terms of B, (y,). Let us therefore find B, (y,).
Simple manipulations yield (4.3)

2 2n — ) 1" )

2 SR 3
Bo(Ta)&';‘-(Taarceosn+ V1—1,3)= P (i-—{——%—-}' “ae +m+' .o

which can easily be shown to be convergent for | y| < 1. This is also true for the series
which shall be obtained below by integrating {4.3). Using (4.2) we find

4 9 3 2n— 5!l 1"
B =g (14 31+ g1t I G iy )

and in the similar manner B,, Bg,... . Integrating (4.3) and (4.4) with respect to x,, we ob-
tain

4
Follr|<Hh=680N=7REM—1—-1)K{]=
2 13 I (2n— 3l
-;(i-}—“z"f'—ﬁz-*’-‘; +("—§;d—,‘“> 72 +) 4.5)

{4 9 9 2n — 5!l
At =6m=137 (1+7r+gr+ +9(Lmm S +...) @6

ete. In (4.5) K(y) and E(y) denote complete elliptic integrals of the first and second kind

respectively.
In the similar manner we find for [y{ > 1,
o (Iv] 2> 1) = v8 (1/ %), F (vl > 1) = ¥*6, (1 / ). (4.7)

5. We have said in Section 1, that the obtained results can find application in the theory
of oscillation. Let us consider again the problem already investigated in [6].
We shall consider steady-state oscillations of a linear elastic system. A driving force

m
H ()=, Hysin 2noyt —¥y)  (Hy>0) (5.0)
i=1
is applied in the x-direction at the point A of the system. This point can move along the x-
axis, and the friction is given by

f(z) = —fo sign 2 — fy7° — Pyz™ signz’ (5.2)
where 3, is the dry friction, while 3, and B, are the coefficients of the viscous friction

and the square law resistance respectively.

Let us suppose that out of the natural frequencies (1, of the system, two, namely 0 ;=
=@, and Q.‘. =@, are resonant. We shall explain how resonant oscillations of one frequency
influence the resonant oscillations of the other frequency, assuming that the ratio of w,
and @, obeys the constraints listed at the end of Section 3 (some cases when these con-
straints are not obeyed are discussed in [6]). We seek the steady-state oscillations of the
system in the form (q, are the principal coordinates)

¢ = af sin (2nog —g@) (=1, 2), =0 (>2) (5.3)
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under the same assumptions as those in {6]. This corresponds to translation of the point 4
according to the law

2

z =D\ aj(A) ¢j = ) ajsin (2n0;t — ;) (5.4)
Jj j=1

where a; = a; A a,' and a,(A) are the values of the coefficients of the form of the natural

oscillations of the system with frequencies {1, at 4.
Utilising the arguments of[6] we obtain equations for the unknown parameters of the sol-

ution (5.4)

1 9@y _ Hj ooy _ Hi .
7

Here V) = 2nwya; and @ =D (x") = By x°[ + % B, x°33B,x°|® is the dissipation
function corresponding to the frictional forces (5.2) [6]. Taking into account the constraints
imposed on the ratio w,/w, we can, using Formulas (4.5) to (4.7), easily find its mean val-
ve (y=V,/V,)

@ (1) = Bo Ve <¥o (1)> + Ya By (V22 + Vi) + 1a BoV2® (¥a (¥)) (5.6)

We shall now consider two cases:
a) Dry and viscous friction. When 8, = 0 we have, from (5.5),

@y —; = /2, BVy+ 2B 0 (Vy <Wpd)/0V; = H; (j=1,2) (5.7)
This easily yie lds approximate formulas with at least 10% accuracy, e.g.
H, b1 H,?
[ (mnt ). m<0s b .
T Hi(1—b) .

m y  He>1.25H,, b <1

where b = 48 /mH; (=1, 2) while k = 27®;.
I{H,=0,thena, =a,,=(1-b)) H,/B,k, (b, <1). Comparing a, with a,, we find

f 4 o<h<os
& tame—ee=h 0SASOS so
a1 = h— by >-9)

=572 4=t > 212

(h= H,/ Hy, b <1)

Fig. 1 gives a,/a,, versus h = H,/H, obtained directly from (5.7) for various values of
the parameter b,. The points plotted on the curve b; = 0.8 correspond to Formulas (5.9).

Analysing the above results together with those of [6] we can infer that, in the system
with dry friction, the amplitude of the resonant oscillations increases with the appearance
of an additional signal of another frequency. Moreover we see from (5.8) that when H, >
>1.25H |, which corresponds approximately to ¥, > 1.15 V,, then the resonant amplitude a,
is a linear function of the amplitude of H . Consequently the harmonic possessing the lar-
ger velocity amplitude linearizes the dry 1f!‘icliou for the “slower’* harmonic (cf. [6 and 7]).

b) Square lawresistance. WhenB,, 3, =0, Egs. (5.5) become

® —p;==mn/2, s By O (Vo (W) /OVy; = H,; (] =1,2) (5.10)
which in turn yield, with an error not exceeding 3%,
{V31:H1/8[3,k13 (1 — Ha?/6H,), H, << 0.8H, (5.11)
ay— e .
! Hy VR 6BsHak® (1 + Hi?/6HaY), H.>Hi

When Hy = 0, ay = a9 = (37H, /8 8k, 9", Consequently
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(h = Hy [ Hy) (5.12)

o 1—h/8, 0Lh<SOS8
!

C+ Y3 Vh h=t

Fig. 2 shows a,/a, versus h = H,/H,. The curve is obtained directly from (5.10), while

s — the points on it are computed according to {5.12). The results obtained
a, imply that, in the system with the square law resistance the amplitude
7}' / of resonant oscillations decreases with the appearance of another sig-

7

e / aa/‘/ | 7,
-
// /—"a"z* 0.6 \\
2 / / r/ gg 0.2 \
)/ Z=Hiss K>

n ? 4 2 4
Fig. 1 Fig. 2

nal of a different frequency. Further, when H, > 1.5 H, i.e. when ¥, > 2 V,, we can neglect
the bracket in (5.11) with little error resulting, and this shows thet the square law resistance
in practically linearized by the action of the *‘fast’’ harmonic on the *‘slow’’ one.
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