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The modification of the WeyI’s theory of uniform distribution [ 1 to S] presented in this paper 

widens ita region of applicability. In particular, we find that the well-known formula which 

refers to the process of time-averaging of functions depending on several harmonics of dif- 
fering frequencies end reduces an infinite integral to a repeated one, can now be applied 
over a much wider region, As an example, we consider biharmonic oscillations of a mechm- 
ical system in the presence of dry and viscous friction, and square law resiatauce. 

1. Many problems of tbc theory of oscillations necessitate the computing of mean values 

of functions which depend, in general, on n set of harmonics possessing arbitrary freqnen- 

ciea. Such is the case of the Vsn der Pohl method of averaging when applied to the systems 
with n degrees of freedom, while another example is given in [6], which presents a method 
of investigating polyharmonic oscillations in nonlinear ayatems based on the process of 
averaging the Lagrangian and the function W, the latter characterizing the nonconservative 

forces. 
Let UB consider a real function f= f&o ,..., rr) periodic in so, .ut,..., x, with the unit 

period and strictly Riemaun integrable over the region O,< z,, < 1 (v = O,..., r). We assume 

that the function 

f (Q = f (% G..., wrt) (1 .f) 

obtained from f by replacing u,, with or,t(v = O,..., r) where tit,,..., or are real numbers, has 

a bound defined by 

(f) = M[f(t)j G lim 
(S---c,)-boO f (t)dt 

+a 
(1.2) 

which we shall call the mean value of f(r). The integral appearing in (1.2) may be difficult 
to integrate when r >, 1, but (1.2) can be replaced by a much simpler formula f2 to 4] 

(f) =i...\f(+, I... ;cq.:,)dz,...dz, (1.3) 
0 0 

provided that the numbers o &u,..., o,/oe are rationally independent (numbem [t,..., ~$r 

are said to be rationally indapcndent if no set of integers 6uo,mt,....mC)lf (0, O,..., 0) sat- 

isfies the Eqs. mltfl + . . . + m, [‘= m. ). A qusstion now arfses, whether a result resemblfng 

(1.3) could not be obtained for the case when some of ors,..., or are commenarsble. We 

shall answer thin, using a modification of the WeyI’s theory of uniform distribution. This ws 
present below as the theory of P-uniform distribution. 
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2. D e f i ni t i o n 2. 1. Let the vector P = (PI ,..., P,) be aa integral vector (i.e. 
all its projections possessing integral values) with all its projections being positive. Then 
the system 

Z”((k) (v=i,.. .,r, k= 1,2,3,. ..) (2.1) 

of real functions of natur al argument shall be P-uniformly distributed (POu.d.) mod 1, if, 
for an arbitrary real vector U= b t+..., a,) together with the integral vectors f = (it,..., 4) 

and 1 = (jl ,..., j, ) whose projections satisfy the inequalities O,< i, < j,,\< P,, the relations 

r j-i 
p lx{& j, Pi x (4 + 41 = n y 

v-1 

(2.2) 

p [q(k)] = lim + $j y(k), x (6 j, P; x) = fi x (L iv, P,; 5,) (2.3 n-m liM1 V==l 

hold. Here x = (rt,..., x,), 

1, i” ,I p, < (x,1 < i” / P” 

x(i”, iv1 P”; x”> = % fr”) = i” / P,, &I = i, j P, (2.4) 

0, {x,1< i” / P”9 {xv1 > i” / P” 

and {+I is the fractional part of xy. 
Theorem 2. I. The’system of functions (2.1) will be P-u.d. mod 1 if and only if 

the limit relation 

holds for any function C&(X) = d&t,..., x* ) Riemsnn integrable over the unit cube O\< xv < 

( 1 fv= l,..., rf and periodic in x1,..., zr with the period equal to unity. for which the limit’ 

p[ q5 X(k) + a)1 is meaningful. In (2.5) 4’ h,/P, ,+.., h,/P,) deootes a value of c$(x) for 

which the inequality 

‘Pi (“11 ‘1, . * a 9 hr I PA < T’ (h / PI, . . . , h, / Pr) < ‘p, (h, / P,, . . . , h, / P,) 

holds. Here c&(hl/P1 ,..., hJPr 1 and &(h JP, ,..., A&‘,) are the corresponding exact lower 

and upper bounds of Q(X) on an open rectangular parallelepiped (h, - 1)/P, < r,< hJP, 

b = l,..., rf. 

P r o o f. N e c e s s i t y : Assuming that 

Q (+...-, t,.) = ‘/P IQ (21 + o,...,z, + 0) + Q ftr - 0 ,..., z,- o)] 

we find, that each of the functions considered in the above theorem satisfies 

Q@(k) 4-a) = . $. . jIQk* ($-, . . ., +)x+-L. h, P; x(k)+@ (2.6) 
P I- 

where h = (hi,...,-h,), 1 = (I,..., 1) ad 

4, (. - ., T”(k) + /a,)* * . .I. (h” - f I/ P, < tx” (k) f /a,)l<h,f P’ 

ok* ( 
hl 

p1 t l ’ l 9 A, p, 1 - 

I 

Q (. . -9 (“” - i) / p” + 0, . . .)t jr”(k) + /a”)} < (h” - i) /P” 

Q(. . ., “,/P*-0% . . .)t fz” (n-1 + /a,)) >, 5 /’ P” 

(v=i,...,r) 

Consequently 

Qi&/&, v. ., W’~)<Q~+(h/J’l~ .-.~~rlP,l6~s(h~lPl, . . ..h.fP,) (2.7) 



If wu now assume that ths q-atom of functions r&I is P-u*d. mod 1, than, anmming both 

parts of (2.6) over k aud tahing into account (2.7) end (2.2) WC obtain, in the limit, (2.5). 

S u f f i c i’s n c y : Let (2.5) hold for the system of functions (2.1). Selecting the 

function X(f, j, P; Xl as @(Xl and tahing into account the obvious ‘formula 

we arrive at the relation (2.2). Therefore (2.1) is P-u.d. mod 1. 
For the system of functions of the form 

x~(k~=g”(k)/P~ (v=i, -.+_r, I~=i,2,3~ -..) (2.8) 

where q&l are integers we have a sharper theoram, the proof of which ia imalogons to that 

of Theorem 2.1, It is 
T h e o r e m 2.2. The ayatem of fUhCtiOne (2.8) is P-u.d. mod 1 if and only if tha 

limit relation 

holds for every q$ (x) given in Theorem 2.1. 
T h e o r e m 2.3. The system of functionlr (2.1) in P-u.d. mod 1, if the limit rcIatfon 

p ke(m-x(k))1 = 0 (2.9) 
where e(t) = Cam= holds for the integral vectors m = (mi,..., m,) f (O,..., 0) whose compo- 

nenta are my f hyPvB h, = f 1, f 2,... (V = f,..., rf. 

Proof, By definition, functions x(&,, jV, P,; x$ can be represented by convergent 

Fourier series 
0) 

1 

a, (m,) = s x (iv9 i,. P,; xv + %I e (- mvxy) dxv 
0 

and we easily see that 

=, (01 = ti, - $1 I p** a, (““PJ = 0 (hv-ff, f2, f3* f. .) (2.111 

Let us now consider the system (2.1) assuming that it satisfies the conditions of the 
theorem. By (2.10) we have, for (2.3) 

x(&j, P; u(Q+-rr)= i . , . $j sl(ml) . . . a, (-1 e (msx (kjf (2.12) 

=%=--oo rllt=--CC 

Performing the summation of both parts of (2.12) overk and tahing into account (2.9) and 
(2.11). we obtain (2.2). Therefore the system of functions (2.1) is P-u.d. mod. 1. 

Definition 2.2. Numbersyt ,..., y, shall be called P-rationslly independent if DC 

set of integers (m,, ml,..., m,bf (0, O,..., 0) such that rut,+ n,,p,, h,= f 1, f 2,.., (VP: 1, 

. . . . r) satisfies the equations m ty t + . . . + m,y, =mo. 
T h e o r e m 2.4. If the numbers yt,..“, y, are P-rationally independent, then the sys- 

tem of fun&one z&)=ky,,(~= I,.... r; k = 1, 2 ,... 1 Is P-u.d. mod. 1. 
Proof, A weLl&town formula for the sum of a geometric progression yields 

n n 
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of the thearem W = ttt*p - m t yt + . . . + m,y, cannot be an integer i f 

mf (a,..., 0) and all m,lC h, P,,, h,= f 1, f 2, f 3,.... Con44qoantly the relation (2.9) of 

Thsorem 2.3 holda, and thi4 prow94 th4 theorem. 
Ha14 it l hoold be noted that if we reqnirs in Dafinition 2.1 that the Eqa. (2.2) holds for 

my, arbitrarily lugs numbera P, ,..., P,, then the definition will become equivalant to the 
definition of uniform ~atribution (u.d.) in the WayI’ souse [3 and 51. Similarly, the theorem4 
givsn l bova will yield the corresponding theorems of the theory of uniform distribution. Fur- 
thsr, Definition 2.1 shows that when the system of functions is u.d. mod 1, then it ia P-u.d. 
mod 1. The converse is, generally, not true. Let us for example consider the following 4yyr 
tern of functions, obviously not u.d. mod 1 

xv (k) = ku, I U, (v = * ,..., r; k = i, 2, 3 ,...I (2.13) 

Here uv, vvS 0 arc integers such that D(uu vv) = I (V = l,.... r) where D(+, vV) is the 
greatest common divisor of uy and v,,, 

It can taaily be shown that the system (2.13) can always be represented as 

xv (k) = kgv / CPU (v = i,...*r) (2.14) 

where 4yr c and pVf 0 sre integers such that 

D (P,. 9”) = 17 D(P,, p,) = 1 (p, v = 1....( t, p # v) 

T h e o r c m 2.5. System of functions (2.13) representable by (2.14) is P-u.d. mod I, 
where P- &,..., p,_t, ctpr) and ctpr = sr= cp,lD(e, 2,). 

P r o o f. First WC shall show that the numbers qt/cpt,..., qf/cp, are P-rationally iudo 
psndent. Let us conaider the values of the sum 

lj = m&l cp, + . ..+ mrq, I cpr (2.15) 

if the components of the vector (m 1,..., m,) 4 (O,..., 0) are mu = hvPv , h, = f 1, f 2, f 3, 

l .* b= 1 ,.,., r). Let m, 4 0 and my = 0 (V = 1. . . . . r - 1). Then r) = m,Qcp, = myur/v, and 
it is obvious that, when m,f k,P, = A,v,, the number W is fractional. If even one of the set 

of nnmbcra ml ,..., mr_t, say ml # 0, then 7 could be written as 

Here Gt = ps,..., R and Bt = mlq&l/pz + . . . + r+qrCI/pr are integers. Multiplying 
(2.16) by CC we find that CC?= mtqtG,/p, + B, is a fraction since Db,, qI)== D(pl, G,) = 

= 1 andmt#htpt whereI,% is sn integer. Therefore W ia also fractional, by Definition 
2.2 the numbers qt/cpt ,..., &/cp, are P-rationally independent and Theorem 2.4 completes 
the proof. 

3. We shall now return to the problem mentioned in Section 1. Let ue write Expression 
(1.2) for the mesn value of the function (1.1) ae 

,, (W-W’ 

(#)==;h&x 1 f(W~tk,Ol~k,....,~r~,)~~k 
k-1 kT 

where ho I T > 0 and 7 P (n + 1) T. We shall nosome, for convenience, that 7’ is equal to 

on4 of the following magnitudea 1 l/o,\ ,..., 1 l/o+\, aay T = To - 1 l/oo( l Putting tk I: 6 t 
+ kT, we obtain 
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Let the nnmbera yt,..., y, be P-rationaIly lndepandent. Using Theorema 2.4 and 2.1 we 

arrive at the expreaaion 

If P, (...) Pr are sufficiently large to justify the following simplification 

+&q.. .+. . .) +. . .,L,. . .)dE” (3.2) 
Y 

then, using (3.1) and putting xo - oo 6 we obtain 

1 1 1 

= 111 c . . . f (x09 El + YlXO:,, * ’ -9 Er + yrxo) al. . . d&r] dxo 
0 0 ;, 

which, after the substitution xy = tV + yvxo (U = l,..., r) and rearrangement of integrala 

yields 

<j> = j. . .ioj j(xo,xl,. . .,x,)dxodxl,. b .,dxr 
0 

(3.3) 

It should be noted that the function #~(ct,..., 5,) is much smoother than f(xo, xl,..., x,) 

from which’it is obtained by integration. It follows therefore that the substitution (3.2) will 

be fully justified for virtually all the functiona f(oot, . . . . o,t) appearing in the study of os- 

cillation processes, already when P, b 3. In particular, it follows that the mean value of 

f(r) = f(~it, ox t) can be obtained from 

provided that the ratio lot] /( a2 is irrational (in which case (3.41 becomea exact), or, pro- 1 
vided that it can be represented as a ratio of two relatively simple nnmbem P, and P, at 

least one of which is large enough to mahe the substitution of the type (3.21 possible, i.e. 

if P, or P, > 3. 

4. Let us consider the function 

‘Pit = I cos (2rro,t - CPA + 7 co9 (a% - Pa) ?+t (*.U 

where i = 0, 1. 2 ,... and o it ot > 0. This function ia uniform and almost periodic, rince the 

corresponding function [COB (2nxi - +i) + y coa (2nxl - (5,)1 Ii+1 ia continnona in both ita 

variablea x and x2. 

3 

Consequently the function (4.11 haa the mean value defined by (1.2) 

(see e.g. [4 I. If the ratio of frequencies o 
end of the previous paragraph, then by (3.41 

and o2 aatiafies the requirementa made at the 
we have 

(Y*i (7)) = i i I cos 2aczl + 7 COB Znz, 13i+1 dz, dzy 

00 
Let na aaaume that Id 2< 1 aad calculate the integral 

Bat (TS) = \ I 008 2lcq + -y* p+l dzl 

0 
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Here y1 P yl(x,) I y cos 2Wxz. Utiliring the obvious formulae 

where z is real, we easily obtain 

B& (Tr) = (2i + 2) (2i -+ 3) B, (G & (0)s $ (2i2:l:)lf 9 B&O) = 0 (4.2) 

where m It denotes the product of natural numbers not greater than m and all of the same 
parity as m. The latter yields B ltl + 2)(y2) in terms of B 2I (y& Let us therefore find Bo (y2f. 

Simple m~ipulationa yield 
(4.3) 

which can easily be shown to be convergent for 1 yl< I, This is also true for the series 
which shall be obtained below by integrating (4.3). Using (4.2) we find 

and in the similar manner B,, Be,... . Integreting (4.3) and (4.4) with respect to v2, we ob- 

tain 

-$(i+ -g + g + ‘ l ‘ + ( t2n2~I~)1f )” p +. * *) 
(2n-5)!! 1 

2n!! 
) yan +...) (4.6) 

(4.5) 

etc. In (4.5) K(y) and E(y) denote complete elliptic integrals of the first and second kind 

reapectivtly~ 

In the similar manner we fiid for 1 yi.>/ 1, 

< Ye (Iv] >, i)) = Y% (I/ Y)l c‘u, (Iv1 > 1)) = rs% (1 I Y),... (4.7) 

5. We have said in Section 1, that the obtained results can find application in the theory 

of oscillation. Let us consider again the problem already investigated in [a]. 

We shall consider steady-state oscillations of a Iiear elastic system. A driving force 

H (t) = 5 Hi sin (WI.@ -a) wt >/ 0) (5.1) 
i=t 

is applied in the x-direction at the point A of the system. This point can move along the X- 

axis, and the friction is given by 

f (2’) = -& sign x’ - &x* - @ax’l’ signi (5.2) 

where #?o ia the dry friction, while ,$t and fs, are the coefficients of the viacous friction 

and the square law resistance respectively. 
Let us suppose that out of the natural frequencies 0, of the system, two, namely Q t- 

=ot and+al are resonant. We shall explain how resonant oscillations of one frequency 

influence the resonant oscillations of the other frequency, assuming that the ratio of firt 

and ox obeya the constraints listed at the end of Section 3 (some cases when these con- 

straints are not obeyed are discassad in 161). W e seek the steady-state oscillations of the 

system in the form (g, are the principal coordinates) 

Pj = Oj’ sin (2Wlt - 9,) (1 = i, 2), Q = 0 (f > 2) (5.31 
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under the same asaumptiona as those in [a]. This corresponds to translation of the point A 
according to the law 

a 

Z = 2 aj (A) qj = 2 aj sin (2JZOjt - Cpj) (5.4) 

j j=l 

where a, = a, (A) a,‘and a,(A) are the values of the coefficients of the form of the natural 

oscillations of the system with frequencies “, at A. 
Utiliaing the arguments of [6] we obtain equations for the unknown parameters of the sol- 

ution (5.4) 

- -m ~CdJS(~j-$j)* 
1 a<uJ,> a (CD> Hj . 

vj Wj 
- - 2Sln (qj-$j) 

i3Vj 
o’= i, 2) (5.5) 

Here L$ = 2nO,a, and@=@ (x’)= &lx’I + % ot x’?$@,lx’l” is the dissipation 

function corresponding to the frictional forces (5.2) [6]. T a k ing into account the constraints 

imposed on the ratio 01/02 we can, using Formulas (4.5) to (4.7). easily find its mean val- 

ue (y= V~‘,/V,) 

(@ (T)) = PO v, (IO (7)) + l/4 B1 (Vl" + Va? + l/a BaV23 (Y, (V)) 

We shall now consider two cases: 

(5.6) 

a) D r y a n d v i s c o u s f r i c t i o n. When p2 = 0 we have, from (5.5), 

qQ -Q’t = n/2, BIVj + 2 I& a (V, <Yd) / aVj = Hj (i = 1, 2) (5.7) 

This easily yie Ids approximate formulas with at least 10% accuracy, e.g. 

+(-l-t bI H2= 
I Hlz (2 - 61)” ’ H., < 0.5, 61 d 1 

(II = 
HI (1 - 6,) 

(3.8) 

Plh (1 - bt / 2) ’ 
H2 > 1.25H,, 6, < 1 

where 6, = ~&,/RH, Q = 1, 2) while k, = 2110~. 

IfH,=O, thenol=olu= (1 - 6,) Hl//3,k, (b, < 1). Comparing o1 with at,, we find 

I+ (1 

blhs 
- 6,) (2 - b,)? a ” O<h,<0.5 

Ql -P 
010 h- bI 

(h- b1/2) (l,- b+ I* h), 1.25 

(5.9) 

Fig. 1 gives o/al0 versus h = H,/H, obtained directly from (5.7) for various values of 

the parameter 6,. The points plotted on the curve 6, = 0.8 correspond to Formulas (5.9). 

Analysing the above results together with those of [6] we can infer that, in the system 
with dry friction, the amplitude of the resonant oscillations increases with the appearance 
of an additional signal of another frequency. Moreover we see from (5.8) that when H, >/ 
>1.2yI,, which corresponds approximately to V2 3 1.15 V,, then the resonant amplitude ot 

is a linear function of the amplitude of H . Consequently the harmonic possessing the lar- 
ger velocity amplitude linearizes the dry diction for the “slower” harmonic (cf. [6 and 71). 

b) Square law resistance. When &, PI = 0, Eqs. (5.5) become 

TJj -*j = a% I 2, ‘/a $1 a (va* (Yz>) / avJ = Hj (t = 13 
which in turn yield, with an error not exceeding 3%, 

{ 

)/3xH1/8PlklS(i-H~=f6H1”), H, < 0.8H1 
aI= 

H1 Jfn / 6bH&? (1 + H? / 6H2)r Hz > Hl 

WhenHs =O,O~= 010 = (3~H~/8~~~‘)~. Consequently 

(5.10) 

(5.ii) 



30 M. V. Miwnov 

Fig. 2 show. at/at0 vereme h = Hz/H,. The cnrve is obtained directly from (5,101, while 

6 the pointi on it ue compated according to (5.12). The results obtained 
Imply thu, in the system with the eqnare law resistance the amplitade 
of resonant oscillatiottr decreaaea with the appearance of another sip 

I 

0.6 

Fig. 1 Fig. 2 

nal of a different freqnency. Further, when Hz 3 1.5 If, i.e. when Yz >/ 2 I’, , we cut neglect 
the bracket in (5.11) with little error reenlting, and this shows that the sqnare law resistance 
im practically linearized by the action of the “fast” harmonic on the “slow” one. 
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